Welcome! Please use the navigational links to explore our website.
PartsASAP LogoCompany Logo (800) 853-2651

Shop Now

   Allis Chalmers Case Farmall IH Ford 8N,9N,2N Ford
   Ferguson John Deere Massey Ferguson Minn. Moline Oliver
 
Marketplace
Classified Ads
Photo Ads
Tractor Parts
Salvage

Community
Discussion Forums
Project Journals
Your Stories
Events Calendar
Hauling Schedule

Galleries
Tractor Photos
Implement Photos
Vintage Photos
Help Identify
Parts & Pieces
Stuck & Troubled
Vintage Ads
Community Album
Photo Ad Archives

Research & Info
Articles
Tractor Registry
Tip of the Day
Safety Cartoons
Tractor Values
Serial Numbers
Tune-Up Guide
Paint Codes
List Prices
Production Nbrs
Tune-Up Specs
Torque Values
3-Point Specs
Glossary

Miscellaneous
Tractor Games
Just For Kids
Virtual Show
Museum Guide
Memorial Page
Feedback Form

Yesterday's Tractors Facebook Page

  
Tractor Talk Discussion Board

Re: engine question


[ Expand ] [ View Replies ] [ Add a Reply ] [ Return to Forum ]

Posted by Dan50 on June 26, 2013 at 19:21:33 from (70.60.82.167):

In Reply to: engine question posted by RVS on June 26, 2013 at 05:22:12:

How about this one. It's a Yamaha "crossplane" motorcycle engine originally invented for their racing bikes. It is meant to provide equal firing pulses theoretically resulting in enhanced traction at the rear tire.

[URL=http://s259.photobucket.com/user/Danfifty/media/crossplaneengine.jpg.html]third party image[/URL]

Here's the explanation:

So Yamaha’s new R1 (read the test report here) has a cross-plane crankshaft: what’s that all about? A conventional four-cylinder engine has its crankpins all in the same plane – a flat-plane crank – with the two inner ones 180 degrees from the two outer ones. The inner two pistons move up and down together, and so do the two outer ones, and it’s this particular configuration which generates something called inertial torque. This is independent of the main torque output generated by the combustion and cylinder pressure and happens entirely because of the crank layout.

Crossplane_03Click on image for galleryTo understand it, first imagine a crankshaft on its own, no pistons or conrods, spinning in friction-free bearings. There’s nothing to slow it down or speed it up so it just keeps spinning at a smooth, constant speed. Now attach the conrods and pistons, and for the sake of this mind experiment, we’ll make them friction-free too, so you can spin the crank again and the pistons bob up and down, and the whole system keeps on rotating and reciprocating. At this stage there’s no combustion or valve gear or anything to confuse the issue, and crucially, there is no energy being put into our system and none being extracted or lost. This matters because it is a fundamental law of the universe that energy cannot be created or destroyed, only converted into another form – physicists know this as the first law of thermodynamics.

Within this system, the pistons are travelling at high speed when they’re half way along their cylinders, and at this point they have a lot of kinetic energy. Yet 90 degrees of crankshaft rotation later, all four pistons are stationary, two at the top, two at the bottom. Their kinetic energy hasn’t simply vanished because it can’t: instead it’s been transferred to the crankshaft, which was responsible for slowing the pistons down. As a result, the crank itself has increased its speed. Another 90 degrees on and the pistons are back up to maximum speed, accelerated by the crank which has returned some energy to them and in turn, it’s slowed down again.

Crossplane_02In a full rotation the crank will have sped up and slowed down twice, generating rapid negative and positive torque pulses completely independent of the torque produced by the combustion. This constant pulsing torque is like a background noise to the main torque output, blurring its edges and taking away a small element of rider control and precision as he tries to hold the back tyre on the very edge of its grip.

On Yamaha’s cross-plane crankshaft, these fluctuations are all but eliminated. In this layout the crankpins are distributed at 90 degrees to each other around the crankshaft (in two planes which form a cross). So as one piston is slowing down and losing energy to the crank, another is speeding up and taking the same amount back. At no point do all the pistons stop together, as they do on a flat-plane crank. Instead the energy flow is evened out and the rotation of the crank is almost completely smooth and steady.

Although I’ve talked about the torque fluctuations as background noise, in fact the scale of them is massive, dwarfing the conventional, output torque by a factor of ten. In a GSX-R1000 engine at 12,000rpm for example, the inertial torque swings from around +500 to –500lb.ft (69kg.m, 680Nm) twice in every revolution of the crank.


Replies:




Add a Reply

:
:
: :

:

:

:

:

:

: If you check this box, email will be sent to you whenever someone replies to this message. Your email address must be entered above to receive notification. This notification will be cancelled automatically after 2 weeks.


 
Advanced Posting Tools
  Upload Photo  Select Gallery Photo  Attach Serial # List 
Return to Post 

TRACTOR PARTS TRACTOR MANUALS
We sell tractor parts!  We have the parts you need to repair your tractor - the right parts. Our low prices and years of research make us your best choice when you need parts. Shop Online Today. [ About Us ]

Home  |  Forums


Today's Featured Article - Choosin, Mounting and Using a Bush Hog Type Mower - by Francis Robinson. Looking around at my new neighbors, most of whom are city raised and have recently acquired their first mini-farms of five to fifteen acres and also from reading questions ask at various discussion sites on the web it is frighteningly apparent that a great many guys (and a few gals) are learning by trial and error and mostly error how to use a very dangerous piece of farm equipment. It is also very apparent that these folks are getting a lot of very poor and often very dangerous advice fro ... [Read Article]

Latest Ad: Sell 1958 Hi-Altitude Massey Fergerson tractor, original condition. three point hitch pto engine, Runs well, photos available upon request [More Ads]

Copyright © 1997-2024 Yesterday's Tractor Co.

All Rights Reserved. Reproduction of any part of this website, including design and content, without written permission is strictly prohibited. Trade Marks and Trade Names contained and used in this Website are those of others, and are used in this Website in a descriptive sense to refer to the products of others. Use of this Web site constitutes acceptance of our User Agreement and Privacy Policy

TRADEMARK DISCLAIMER: Tradenames and Trademarks referred to within Yesterday's Tractor Co. products and within the Yesterday's Tractor Co. websites are the property of their respective trademark holders. None of these trademark holders are affiliated with Yesterday's Tractor Co., our products, or our website nor are we sponsored by them. John Deere and its logos are the registered trademarks of the John Deere Corporation. Agco, Agco Allis, White, Massey Ferguson and their logos are the registered trademarks of AGCO Corporation. Case, Case-IH, Farmall, International Harvester, New Holland and their logos are registered trademarks of CNH Global N.V.

Yesterday's Tractors - Antique Tractor Headquarters

Website Accessibility Policy